- Purpose
- How to apply the tool
- Context of the tool







Introduction to the Velocity Plank

#### **PURPOSE OF TOOL**

- It was created in the 1940's (Wilm and Storey, 1944), and was originally made out of wood but it has since been modified to be transparent and lighter.
- The velocity plank is a simple tool that allows you to measure the velocity of a stream. The velocity plank is solid, lightweight, and simple enough to allow velocity measurements to be made effectively on site. It has a good accuracy; it is typically precise to within 5%.
- It is 1.1 meters high and 10 cm wide, the thickness is 7 mm with a reinforcement bar at the back. The top of the tool has a handle to hold whilst taking measurements. A lanyard has been attached to the handle to prevent the user from losing the TVHR in the river.

# HOW TO USE IT: SAMPLING PROCEDURE

### Steps to do before sampling

- Place the safety loop on one of your wrists.
- Do not stand in front of the velocity plank, as this will alter stream flow, which will impact on the readings you take.



# HOW TO USE IT: SAMPLING PROCEDURE

### Steps to do before sampling

- Place the safety loop on one of your wrists.
- Do not stand in front of the velocity plank, as this will alter stream flow, which will impact on the readings you take.



#### **HOW TO USE IT: SAMPLING PROCEDURE**

• Measure the **depth** and height of the stream at 3 points along the cross section of the

river using the velocity plank.



 Hold the velocity plank at a 90 degree angle perpendicular to flow to measure depth. During this step, the velocity plank needs to be pushed firmly against the stream bed to prevent any slipping.



### **HOW TO USE IT: MEASURING HEIGHT**

- Place the velocity plank at 90 degrees to the stream flow and 90 degrees to the water's surface, even in the case of a sloping streambed.
- Observe the maximum height reached by the water on the velocity plank for 20 seconds. The highest point is the maximum height, and lowest point, minimum height.



### **DETERMINING STREAM VELOCITY**

- Calculate the change in height ( $\Delta H$ ) = maximum height minus the minimum height (measured in cm).
- Find  $\Delta H$  on the table of velocities and determine the corresponding velocity for that  $\Delta H$ .



### **TABLE OF VELOCITIES**

| ΔΗ   | Velocity |   | ΔΗ   | Velocity | ΔΗ   | Velocity |   | ΔН   | Velocity | ΔΗ   | Velocity |
|------|----------|---|------|----------|------|----------|---|------|----------|------|----------|
| (cm) | (m/s)    | ( | (cm) | (m/s)    | (cm) | (m/s)    |   | (cm) | (m/s)    | (cm) | (m/s)    |
| 0.5  | 0.12     |   | 5.5  | 0.80     | 10.5 | 1.17     |   | 15.5 | 1.45     | 20.5 | 1.70     |
| 1.0  | 0.24     |   | 6.0  | 0.84     | 11.0 | 1.20     | ١ | 16.0 | 1.48     | 21.0 | 1.72     |
| 1.5  | 0.33     |   | 6.5  | 0.88     | 11.5 | 1.23     | ١ | 16.5 | 1.50     | 21.5 | 1.74     |
| 2.0  | 0.41     |   | 7.0  | 0.92     | 12.0 | 1.26     | ١ | 17.0 | 1.53     | 22.0 | 1.76     |
| 2.5  | 0.48     |   | 7.5  | 0.96     | 12.5 | 1.29     | ١ | 17.5 | 1.55     | 22.5 | 1.79     |
| 3.0  | 0.54     |   | 8.0  | 1.00     | 13.0 | 1.32     | ١ | 18.0 | 1.58     | 23.0 | 1.81     |
| 3.5  | 0.60     |   | 8.5  | 1.03     | 13.5 | 1.34     | ١ | 18.5 | 1.60     | 23.5 | 1.83     |
| 4.0  | 0.65     |   | 9.0  | 1.07     | 14.0 | 1.37     | ١ | 19.0 | 1.63     | 24.0 | 1.85     |
| 4.5  | 0.70     |   | 9.5  | 1.10     | 14.5 | 1.40     |   | 19.5 | 1.65     | 24.5 | 1.87     |
| 5.0  | 0.75     |   | 10.0 | 1.13     | 15.0 | 1.43     |   | 20.0 | 1.67     | 25.0 | 1.89     |